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Abstract

We had the opportunity to conduct an empirical study
in the context of the testing environment for a large
commercial product. The particular goal of the orga-
nization for which this study was done, was to gain
a strong understanding of how particular aspects of
their testing practice impact on the quality of the re-
leased products. In this paper we present some of
the results of that research as it relates to the verifica-
tion of intuitive claims of those in this industrial envi-
ronment, and documented claims from other research
about the relationships between several parameters.
The parameters of interest to the organization were:
breadth of system and regression testing of software
components defined by code coverage, number of de-
fects discovered by an in-house test team prior to the
release of those software components, and number of
defects discovered by the customer in the field subse-
quent to the release of those software components.

1 Introduction

In the practice and research of software engineering,
several claims and assumptions are made and held
about software development practices and their im-
pact on the quality of the product that is released.
There is, however, a lack of quantitative evidence to
support many of these claims, and much of the dis-
cussion in the area is anecdotal. There has been much
discussion in [NF94] and [PPV00] about the fact that
those in software development have not measured the
efficiency or economy for most of the models that are
proposed. More specifically, there are several claims
pertaining to software quality and its relationship to
testing, and the number of defects in software. Such
assertions are relevant to those in industrial circum-
stances, and often guide their perception of the effec-
tiveness of their efforts. This particularly so in the ab-
sence of in-house measurement programs to verify the

productiveness of testing activities. The absence of
such programs is stated by Carnegie Mellon Univer-
sity’s Software Engineering Institute [TG96] which
confirms that 75% of the world’s software develop-
ment organizations take an ad hoc, unmeasured ap-
proach to development. Industrially based empirical
studies are therefore of utmost importance for the ad-
vancement of knowledge in disciplines such as soft-
ware testing.

According to [PPV00] an empirical study is a test
that compares what we believe to what we observe.
It must therefore present a hypothesis and set out to
prove or disprove it. We are therefore not discussing
work where experiments are done and quantitative re-
sults are merely recorded. There must be some hy-
pothetical assertion and evaluation of whether that as-
sertion is met. The conclusions are not solely a prod-
uct of what we observe, but are also influenced by
this prior belief. The study is targeted at those beliefs
and as such, will influence practice based on those
ideas. We have noted some examples focussed on
the issues of software measurement, testing, and the
resulting quality. These include the work of Adams
in [Ada84], Daskalantonakis in [Das92], Khoshgof-
taar, Allen, Kalaichelvan, and Goel in [KAKG96],
Fenton and Ohlsson in [FO00], Shen, Yu, Thebault,
and Paulsen in [SYTP85], and Piwowarski, Ohba
and Caruso in [POC93]. We discuss these in section
two, however they hardly constitute a mature body of
knowledge.

Our study is intended to add to work such as that
of [Ada84], [Das92], [KAKG96], [FO00], [SYTP85],
and [POC93]. We also add a new perspective on is-
sues that currently offer intuitive and qualitative argu-
ments but no quantitative empirical substance. We do
not claim that this work is the final statement on these
questions, but do believe that they contribute to a body
of work that will be strengthened by the documenta-
tion of this research.

Our discussion proceeds as follows. In section two



we review other empirical studies that are relevant to
testing and software quality, and that our study seeks
to complement. We continue by explaining the ter-
minology that is used in the paper in our third sec-
tion. Section four introduces the hypotheses that this
paper will prove or disprove, and then we present a
brief description of the industrial product that we used
to conduct our study in section five. We then explain
the exact nature of the parameters that we have col-
lected and give the reader an idea of how this data was
collected. In section six we provide the reader with
an understanding of how the hypotheses that we have
stated are currently presented in the literature. This
section includes a summary of how we analyzed the
data and our own results, as well as an exploration of
what the results have shown with respect to the docu-
mented hypotheses. Finally, the conclusions and our
outlook to future analysis and studies are presented in
section seven.

2 Related Work

In [Das92] the authors discuss a program of metrics
collection and analysis instituted for Motorola. This
initiative was undertaken, as is our current study, to
better understand their development process and to
increase productivity, quality, and development cy-
cle time. The company implemented requirements
that mandated that specific metrics be taken includ-
ing measurements of delivered defects, delivered de-
fects per size of product, customer reported errors,
and software reliability. The stated goals enumer-
ated these measurements and correlated directly with
them. The researchers documented several specific
questions that were to be answered, such as - What is
the currently known defect content of software deliv-
ered to customers, normalized by assembly equivalent
source size? They stated that they were able to answer
these questions (even though the particular answers to
questions such as those above are omitted, we believe
due to their sensitive nature), and at the end of this
study they saw measurable benefits to recording these
metrics, which included the marked reduction of re-
leased software defect density to a mere 2% of what it
was originally, over a period of three and a half years.

Another relevant empirical study is the work done
in [FO00]. This research is actually the epitome of
the kind of study that we document here. Fenton and
Ohlsson outline hypotheses on the Pareto principle,
which examines beliefs on the concentration of de-
fects in code, the use of data on defects found in-
house by the vendor to predict errors found by cus-

tomers in the field, the prediction capability of size,
and complexity metrics for defects, and the effects
of test on quality. As the description of our own
hypotheses indicates, our work is strongly related to
this study. These investigators actually presented sev-
eral counterintuitive discoveries, and confirmed a few
widely held beliefs. For example, they found weak
support for the hypothesis that a higher number of
defects found in function level testing correlates to a
higher number of defects found in system level test-
ing. In contrast, they refuted the hypothesis that a
higher number of errors found in-house translates to
a higher number of defects found by customers. An
interesting statement by these researchers, is that it is
difficult to state static software engineering laws, and
that much of the results in these hypotheses and be-
liefs, appears to vary with the project. It is therefore
interesting to continue studies such as this in our cur-
rent case study, and observe whether particular pat-
terns maintain constancy. This study is thought to be a
valuable contribution to the empirical body of knowl-
edge in software quality.

Other valuable work is found in the classic study
by Adams [Ada84] which documented an extensive
study on several IBM R
products and found that the
most pervasive failures in the field are those caused
by defects found by customers just after the release of
software products. These defects that cause repeated
problems are relatively few in relation to the total
number of defects that are eventually found. Adams
was therefore able to motivate a process of preven-
tive maintenance to preempt the redundant and there-
fore costly rediscoveries of these virulent problems
by customers. In [POC93], the researchers conducted
a measured study, this time to investigate the per-
ceived usefulness of test coverage for assuring quality
in large, realistic projects. The researchers were able
to be more specific in their assertions and actually note
the critical percentage level of coverage that was nec-
essary for their project. Like [FO00], this relates to
our work, as the extent to which testing is necessary
is of importance to us.

Khoshgoftaar and colleagues [KAKG96] look at
the issue of fault-prone modules. This is some-
what similar, though approached in a different man-
ner, to [Ada84]. This study uses discriminant anal-
ysis [KAKG96] to define a discriminant function
[KAKG96] that assigns modules to fault prone or not
fault prone classes, and undertakes to prove the valid-
ity of these assignments. Their hypothesis is that be-
ing able to identify such a fault prone nature is enough
to quantify the overall quality of the product, render-



ing fault prediction for the entire product unnecessary.
Their most valuable finding was that this hypothesis,
according to their study, is true. [SYTP85] provides
very similar research and adds to our motivation to
conduct additional studies into the relationship of in-
house discovered defects and customer discovered de-
fects. We will discuss much more of this related work
as we investigate our own hypotheses and findings.

3 Terminology

This section briefly describes the terminology used
in this paper, which includes definitions given in the
glossary of the IEEE Standards Collection in Software
Engineering [IEE91].

� Pre-release: Refers to any activity that occurs
prior to the release of the software product.

� Post-release: Refers to any activity that occurs
after the release of the software product.

� Testing: Refers to all testing studied in this re-
search, such as regression and system testing.

� Defect: A variance from a desired product at-
tribute. There are two types of defects: (1) de-
fects from product specification occur when the
product deviates from the specifications, and (2)
defects from customer expectation occur when
the product does not meet the customer’s re-
quirements, which failed to be expressed in the
specifications.

The development organization in this case con-
siders a defect to be a defect from product spec-
ifications as the product is not custom-built and
requirements are determined in-house.

– The defect itself may mean any of the
following: the specifications were imple-
mented incorrectly, a specified requirement
is missing, or there is an extra requirement
that is included in the product that was not
specified.

– The testing team is able to determine a de-
fect when a failure occurs and based on
a specification document and product doc-
umentation. The customer is able to de-
termine a defect when failure occurs and
based on product documentation.

� Failure: Occurs when a defect causes an error in
operation.

� Regression testing: Selective testing of a system
component to verify that modifications have not
caused unintended effects, and that the system
or component still complies with its specified re-
quirements. In the context of our case study, re-
gression testing is composed of tests from the
evolving functional testing repository. Func-
tional testing is focused on the specified func-
tional requirements and as such does not verify
the interactions of system functions.

� System testing: Testing conducted on a com-
plete integrated system to evaluate the system’s
compliance with its specified requirements. This
type of testing therefore evaluates the interac-
tions of the functions in the environment spec-
ified in the requirements. In this case specifi-
cally, system testing is used to assess the over-
all quality of the code from the perspective of
the customer. System testing is conducted in an
environment that attempts to model as realisti-
cally as possible scenarios of customer usage.
These scenarios are largely based on the quan-
titative knowledge of domain experts within the
test team, as well as continuously gathered infor-
mation from reported customer experiences with
the product.

� In-house defects: Refers to all defects found by a
test team for a product at the development orga-
nization’s site prior to the release of that product.

� Field defects: Refers to all defects found by cus-
tomers using the product in their organization
post-release.

� Pearson correlation coefficient (PCC): The mea-
sure of the strength of the linear relationship be-
tween two random variables x and y. It is de-
noted byR. It ranges between 1 for a strongposi-
tive relationship, and -1 for a strong negative re-
lationship [MI82]. Its square, R2, indicates the
strength of the fit of the data as it quantifies the
sum of squares of deviation.

4 Our Hypotheses

The hypotheses we address can be categorized into
two groups.



Group 1: Hypothesis for testing and its effect on
pre-release defects

� The higher the percentage of the code exercised
with all types of testing, and specifically regres-
sion and system testing, the more defects the in-
house test team should find.

Group 2: Hypotheses for testing and its effect on
post-release defects

� If more defects are found in a module by the in-
house test team in pre-release testing, fewer de-
fects will be found in that module by customers
after the release of the software.

� If more coverage of a module is achieved
through all types of testing, and specifically
regression and system testing, fewer defects will
be found by the customer.

5 The Data

5.1 The Product

The product used in this study is a large commer-
cial product. We conducted the analysis in the con-
text of system testing and regression testing. We were
able to study 221 modules of the product, comprised
of 201,629 lines of code (LOC). These 221 modules
comprised two software components of the product.
The code size is allocated to the modules as shown
in Table 1. In these 221 modules the largest module
was 7700 LOC, the smallest was 11 LOC, and the av-
erage size was 921 LOC. The product is highly com-
plex and has been augmented throughseveral versions
over a period of many years. Our research exam-
ines the development period between two separately
released bundles of software correction code, called
patches. In addition to the corrective capability of
these patches, they offer limited additional function-
ality. The defects to be corrected are those that have
been reported by a few customers but not necessarily
found by all customers. So the patches will preven-
tively correct problems where they may not have been
discovered yet.

5.2 The Metrics

In this development organization, when unspecified
behaviour is discovered prior to release by the test-
ing team, a report is generated for that defect. It is

recorded in an official defect tracking system and re-
ported to the development team for correction. A for-
mal process is followed to handle such defect esca-
lation through the development chain for correction,
and subsequent rectification. This process may result
in the generation of a corrective piece of code that is
integrated into the system, at which time the defect
is closed. A defect may also be identified as being
void due to misunderstanding of the specifications for
the product. Also when functionality included in the
specification is noted to be missing from the product
(prior to release) by the in-house test team, this omis-
sion may be deferred for some future release, and is
counted as a pre-release in-house defect in the prod-
uct. These are distinct from post-release field defects,
found by the customer1. We only consider those de-
fects that are closed or deferred. These are valid de-
fects. When identical defective behaviour is identified
on more than one occasion, the defect is considered to
be a duplicate and is not counted.

Let us call the previous version of the product X,
and the version by which we contextualize pre- and
post-release Y. Product Y was the most recent release
at the time of the study. The parameters that define
this study for product Y are the following: the code
coverage achieved by system testing, and the code
coverage achieved through regression testing. These
are the independent variables [Per00]. The dependent
variable in this case is the defect. This includes both
in-house pre-release defects for Y and post-release
field defects. These defects are the perceived end
product of the overall testing process.

Code coverage was measured using the software
testing and analysis tool – ATAC (Automatic Test
Analysis for C or C++) [ML94, Tel98]. (The code
for the commercial product is C code based.) Each
of the 221 modules has corresponding levels of cov-
erage that were achieved by running regression and
system level testing on them. They each also have a
corresponding number of field and in-house defects
associated with them. This facilitates analysis by al-
lowing us to plot graphs of coverage percentage val-
ues against defects for all modules. In section six we
conduct such analysis by plotting coverage percent-
age values on the x-axis (in both regression and sys-
tem testing cases), and field defects and in-house de-

1It is important to note that because those items that fall into the
deferred category are functionality based, when deferral decisions
are made, these items are not included in the instructional documen-
tation for the customer. As a result, when the product is released,
customers are unaware of deferred functions, thus they cannot con-
sider missing functionality that is not documented to be a valid field
defect.



Size (Lines of Code) No. of Modules
up to 500 107
501 – 1000 56
1001 – 2000 34
2001 – 3000 14
3001 – 4000 4
4001 – 5000 2
5001 – 6000 1
6001 – 7000 1
7001 – 8000 2

Total 221

Table 1: Modules and Lines of Code

fects on the y-axis for all files. In the histogram how-
ever, instead of creating one point for each coverage
value to defect relationship, we total all defects for
all files with coverage recorded within categories of
ten percentage values and plot them according to this
grouping. This displays the trends of the defects ac-
cording to the code coverage categories. This is ex-
plained further in section six.

The coverage analysis is based on data flow through
the program and we were able to collect a coverage
value for each module, for both types of testing, using
the following procedure.

1. The program was prepared for testing with a
preprocess-compile-link phase. In this step, run-
ning the ATAC tool, instrumented the source
code, and tables outlining data flow were gen-
erated. This instrumentation and the tables are
used at product code run-time by ATAC.

2. The system and regression test scripts were run
with the product code. The ATAC run-time pro-
gram collected trace and coverage information.

3. The coverage and trace information provided
coverage values for the tests conducted. It also
offered information on the source code con-
structs that were not covered by the tests.

ATAC offers eight types of coverage [Tel98]. The
simplest is function entry coverage, which is an anal-
ysis of coverage that ensures that all functions within
a program are called at least once. A more power-
ful level of coverage is branch-free or block cover-
age, which offers a slightly stronger version of cover-
age by analyzing the coverage of basic blocks2. The

2A basic block, or simply, a block, is a code sequence that is al-
ways executed sequentially, meaning, it has no internal branching
constructs. It is also described as any “single-entry-single-exit” re-
gion of code [Tel98]

most involved type is all-uses coverage, which en-
sures that when a variable can be assigned in several
ways, each assignment is tested. We used block cov-
erage for our study as it is a common coverage mea-
sure for industrial analysis [GWTH98]. We will con-
sider other types of coverage in future work.

The achievement of 100% block coverage through
testing, verifies that all basic blocks have been exe-
cuted at least once [Tel98]. So, the instructions in any
basic block are either executed all together, or not at
all. In C and C++, a block may contain more than one
statement if no branching occurs between statements.
A statement may contain multiple blocks if branch-
ing occurs inside the statement. An expression may
contain multiple blocks if branching is implied within
the expression (for example, conditional, logical-and,
and logical-or expressions). ATAC begins a new ba-
sic block after a functioncall because it is possible that
the function call will not return (for example if exit is
called within the function)[Tel98].

The in-house defects and field defects associated
with each module were collected from the defect
tracking system by carrying out a query for:

1. Valid defects reported in-house for the product
between the release dates of product X and prod-
uct Y.

2. Valid defects reported by customers for field de-
fects for the product after the release date for
product Y.

We are aware that some of the recently reported
in-house and field defects may have flowed from de-
fects in previous versions of the product. These de-
fects may only be discovered now as part of the prod-
uct labelled Y. However, as these defects were not pre-
viously revealed in any earlier use, and we do not con-
sider duplicate defects to be valid, it is satisfactory to



Histogram for Regression Coverage vs. In-house and Field Defects
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Figure 1: Analysis of Regression Coverage and Defects

group these with all other defects for Y. This is also a
reasonable approach because in a highly quality con-
trolled environment, such as the release environment
for the product under study, no known defects are re-
leased to the customer, so once again any field defects
would not have been previously revealed by the in-
house team.

6 The Hypotheses and Associated
Results

This is a comparative discussion, this means that we
are comparing belief with fact. The belief that we
are challenging is both our own and the belief of oth-
ers. Consequently, it is important to furnish the reader
with some background on how the hypotheses that
we discuss in this paper are presented by other re-
searchers. We will briefly present that information
here as part of the explorationof our analysis and find-
ings.

6.1 Hypothesis 1

The perception by those in software quality research
and practice is that when more code is exercised

through testing, more defects should be found by the
in-house test. Kit [Kit95] notes an example of this.
He states the following for statement level coverage
which is equivalent to block coverage:

The probability of finding new defects is in-
versely proportional to the amount of code
not yet covered. The closer we are to
achieving 100% coverage, the more likely it
becomes that we are searching in previously
unnavigated territory and the more likely it
is that we will find more defects per line of
code.

We therefore present such a belief in Hypothesis 1a .

Hypothesis 1a: The higher the percentage of the code
exercised with all types of testing, and specifically re-
gression and system testing, the more defects the in-
house test team should find.

In Figures 1 and 2 we present histograms of the be-
haviour of defects3 found by the in-house testing team
for the 221 modules when mapped against the level of

3We must note for the purpose of clarity, that these defects are
all of those extracted for the system between the release of the two
bundles. We did not distinguish between defects revealed during
regression testing or system level testing. After this defect extrac-



coverage achieved in groups of 10 percentage values
for those modules. For example, there are three mod-
ules for which coverage was achieved at levels vary-
ing from 11% to 20%. We totaled the defects that were
found in these three modules by the in-house testing
team, running regression tests prior to the release of
Y. This total is presented as a single point on the in-
house defect line in Figure 1 for 11-20% regression
coverage.

It is very important for us to point out at this time
that our histograms are plotted with the same scale for
field defects and in-house defects. Meaning, that if
we plot a point (a; b) for field defects vs. coverage
percentage values, it will fall on the same horizontal
plane of a point (c; b) for in-house defects. We have
removed the actual values on the vertical axes of the
graphs due to the the classified nature of the raw de-
fect data. This must be emphasized as we placed field
defects and in-house defects on separate axes merely
for visual clarity and not because of differing scales.

We have also chosen to include the post-release
field defects on the graphs of in-house pre-release de-
fects. This allows the relationship between the two
graphs to reveal itself immediately. We will reserve
the discussion of the post-release observations for the
next section. For further comparison we show, the
two graphs, Figures 1 and 2 merged intoa single graph
in Figure 3. This allows us to observe the similarity
between the two graphs. We see that both pre-release
in-house defects and post-release field defects (as cor-
related to system and regression coverage) show sim-
ilar trends.

It is important to note for Figure 3, that because this
is generated for the sake of comparison, the defects re-
ferred to as regression field defects and system field
defects are distinguished between the types of cover-
age even though they are the same defects. This is be-
cause they are correlated to regression test coverage
and system test coverage respectively. This therefore
means that the defects are sorted according to the type
of coverage that they are correlated to, and so main-
tain their graphical shapes from Figures 1 and 2. So
the x-axis shows a label of Coverage Percentage Val-
ues, which in this case includes regression and system
test coverage.

Examining these graphs we notice that the percep-
tion of more testing resulting in the discovery of more
defects up to the maximum of 100% is not substanti-

tion, we then correlated the numbers of all defects with the mea-
sured coverage values in order to see what impact the levels of test-
ing had on the overall quality of the product. We show these defects
in a histogram format as explained in section 6.1 .

ated in this case. The unexpected relationship shows
itself for the regression test cases and for the system
test scenarios. The observation here is one of effec-
tiveness of testing up to a point at which the produc-
tivity of testing efforts appears to decline. This peak
value for coverage achievement occurs for these mod-
ules in the 61% to 70% range when correlated to re-
gression test coverage (Figure 1), and the 51% to 60%
range when correlated to system test coverage (Fig-
ure 2). Piwowarski, Ohba and Caruso [POC93] also
observed a similar trend of a decline after some peak
value for in-house defects for their project, and stated
that in their case ” 70% statement coverage is the crit-
ical point for their function test to ensure that the test
cases sufficiently exercise and cover all output pat-
terns”. We must also emphasize the relative flatness
of the field defect graphs with respect to the height of
the graphs for the defects found by the in-house test
team. This is definitely a sign of strong productivity
on the part of the in-house test team.

6.2 Hypothesis 2

Our second set of hypotheses relates to breadth of test-
ing and its effects on post-release defects. The widely
held belief is that the more testing an organization
does, the better the product the customers receive will
be with respect to fewer defects. This larger view is
broken up into two specific hypotheses.

Hypothesis 2a: If more defects are found in a module
by the in-house test team in pre-release testing, fewer
defects will be found in that module by customers af-
ter the release of the software.

This is an interesting hypothesis and is the foun-
dation for the primary objective of most testers. The
statements of this hypothesis are largely anecdotal.
Pressman [Pre97] states that if testing is conducted
successfully, with the objective of offering a high
probability of finding undiscovered errors, there will
be a good indication that functions are working ac-
cording to specification, that is, without defect. This
is qualified by Pressman by including the fact that, to
achieve such a good indication, there must be contin-
uation in the testing process to actually reveal such de-
fects. He also premises his statements by adding that
it is impossible to show that there are no defects re-
maining in a product, but only to show that some de-
fects are present.



H istogram for S ystem C overage vs. In-house and Field  D efects

0

1
 t

o
 1

0

1
1

 t
o

 2
0

2
1

 t
o

 3
0

3
1

 t
o

 4
0

4
1

 t
o

 5
0

5
1

 t
o

 6
0

6
1

 t
o

 7
0

7
1

 t
o

 8
0

8
1

 t
o

 9
0

9
1

 t
o

 1
0

0

Cove ra ge  Pe rce nta ge  Va lues

F
ie

ld
 D

e
fe

c
ts

 

In
-h

o
u

se
 D

e
fe

c
ts

Field 

In-house

Figure 2: Analysis of System Coverage and Defects
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He observes that, ”...as test results are gathered
and evaluated, a qualitative indication of software
quality and reliability begins to surface.” This means
that, the qualitative belief of test organizations that the
discovery of more defects by their efforts prior to re-
lease, indicates that the customer will be faced with
fewer defects while the product is in the field.

Figure 4 is a column and line graph of the pre-
release (in-house) defects found in the modules, and
the post-release (field) defects found in the same mod-
ules, with in-house defects represented by the grey
area on the right side of the graph, and field defects
represented by the narrow, dark columns. These are
plotted against a listing of the modules ordered from
left to right for those modules with the least amount of
pre-release defects to those with the most pre-release
defects. This graph shows the in-house and field de-
fects for each file as fractions of the overall total num-
ber of in-house and field defects. For example, if two
pre-release defects in module c1 of componentC were
found, and the overall total of all defects in all mod-
ules fc1; :::; cng in component C was 10, then the
value for c1 that would show on the graph is 0.2. This
allows us to present the scale of the trends of the defect
values relative to each other and maintain the classi-
fied nature of the raw data.

The Pearson correlation coefficient (PCC), of the
strength of the linear relationship between field and
in-house defect types, was calculated. The relation-
ship was a weak positive relationship with correlation
coefficient value 0.3837. The hypothesis is therefore
not supported. We must also offer the reader the R

2

value, as this is a necessary measure of how well the
linear model fit the data. An R

2 value of zero implies
a complete lack of fit of the linear model to the data,
and a value of one implies a strong fit. In this case the
R
2 value is 0.1472. So we are seeing a very weak rela-

tionship where the modules in which more errors tend
to be found by the in-house test team, have a tendency
to be the same modules where proportionately more
errors are found by the customers.

In the empirical study done by Fenton and Ohlsson
[FO00], they hypothesized that a higher incidence of
faults in all pre-release testing (which in their study
consists of system testing and functional testing), im-
plies higher incidence of faults in operation. Their be-
lief was founded in a perception of the existence of
rogue modules. These are the perceived small num-
ber of modules that account for most of the defects oc-
curring in code, thus presenting themselves as defect
infested both before and after release. They found no
evidence in their data to support this belief. We have,

on the contrary, observed a contradiction of our own
hypothesis on this topic, and some implication of the
hypothesis observed by Fenton and Ohlsson [FO00]
for our product. This will have to be studied further
to observe more definitive evidence.

Hypothesis 2b: If more coverage of a module is
achieved through all types of testing, and specifically
regression and system testing, fewer defects will be
found by the customer.

This hypothesis is strongly related to the previous
one. This implies that the more rigorous and complete
one’s efforts are in testing, the higher quality the final
product will be. Lyu, Horgan, and London [ML94]
hypothesize that good data flow testing produces a
good coverage score, and good data flow testing im-
plies good software. They conducted investigations
of the usefulness of the ATAC tool to test flight con-
trol software, with this hypothesis as one of its gauges.
Their experience was that high coverage translated to
lower defects in the field. In fact, the researchers only
encountered one defect in the field.

In our analysis there appears to be a non-linear re-
lationship between post-release defects and module
coverage. This can be seen in Figures 1-3. The re-
lationship is very similar to the relationship for pre-
release defects and module coverage. However, the
counterintuitive discovery here is that, as the amount
of pre-release testing increases in a module, so do the
number of defects found by the customer up to ap-
proximately 61-70% coverage. These field defects
decline after this point and then we see the expected
field defect behaviour. This expected behaviour is a
decline in the number of field defects found by cus-
tomers in modules, as in-house test coverage for those
modules increases in the ranges from 71% to 100%.

We do not claim at this point, that this is a gen-
eral trend to be expected in the testing of every soft-
ware product. We do however see a logical explana-
tion for this finding in our belief that there is a level
of testing for which we must strive, and only after we
have achieved this level of testing can we be confident
about the expectation of our hypothesis for increased
quality. We also find the similarity of the curves for
pre-release and post-release defects in relation to test-
ing coverage quite interesting, and note that both of
these curves seem to indicate that level of testing that
is optimal as in [POC93]. We will continue to inves-
tigate this relationship in further work.



In -house Defects (per file )/ Total In-house Defects 

vs. F ield D efects (per file)/ Total Fie ld  Defects 

0

0.05

0.1

0.15
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

File  num be r orde re d by Num be r of In-house  De fe cts

In
-h

o
u

se
 o

r 
F

ie
ld

 D
e

fe
c

ts

(p
e

r 
fi

le
)/

 T
o

ta
l

In-house
(frac t ion)
Field
(frac t ion)

Figure 4: Analysis of In-house Defects and Field Defects

7 Conclusions and Future Work

In this study of the relationships between defects and
testing, we have made some interesting observations.
We have seen that in the effort to find as many of
the defects hidden in a product as possible, the test-
ing method that exercises 100% of the product may
be spending too many resources on the testing effort.
It is actually the case that testing is optimized to a
point for block coverage, and any other efforts spent
on in-house testing will be less productive in their de-
fect yield prior to product release. This confirmed and
added to work in [POC93]. We also saw that with in-
creased coverage for modules, the defects that cus-
tomers see in the product also increases to a point,
and then declines. This implies that there is a level of
coverage that the testing organization must insist on
achieving before a stop-test decision can be consid-
ered. In our case that critical coverage range that must
be achieved is 71-80%. It also implies that the code
that is being covered is not always the code where the
customers are finding the defects, so the code is not
always being exercised in-house in a manner that is
similar to field use.

Furthermore, if the two results are considered in
conjunction, we note that apparent productivity in
testing in-house does not mean that there will be more
satisfaction in the field. Rather, the testing must be ef-

fectively targeted. This observation is actually borne
out in our investigation of the correlation between the
number of defects found in-house pre-release, to the
number of defects found by the customer after release.
This relationship did not have the strength that we
originally believed that it would. It was weakly posi-
tive, that is, there was some tendency for the modules
where more defects are found by the pre-release test
team to coincide with the modules where the customer
finds more defects. This therefore complements the
findings of [KAKG96], where the researchers state
that the most fault-prone modules indicate the field
quality of the software. We must state that our weakly
positive relationship was not a strong linear fit, but
we can state that our prior belief that in-house efforts
would result in strong field quality was not as obvi-
ous as first believed. Once again, we see that more
effort, and even more in-house yield, does not neces-
sarily correlate with more quality.

We should also note that in this case there were a
few files in which there were field discovered defects
but no in-house discovered defects. If we look closely
at Figure 4, this must be taken into consideration, as
it may have implications for the data of Figures 1 to
3. They show that even with increased coverage both
in regression and system testing, customers are still
finding an increasing number of defects to a critical
point. Thus, the in-house testing, though highly pro-



ductive for most files, is overlooking a few defects in
others, as seen in the field activity in Figure 4. We
have noted previously that there is quite a large sep-
aration between the pre-release and post-release de-
fects in Figures 1 to 3, which indicates high effective-
ness by the test organization. We see this as an op-
portunity for enhanced efforts in ensuring that poten-
tial customer use of the system is taken into consider-
ation and such field defect activity where there is no
in-house defect activity is eliminated. This adds to the
previous findings of [Ada84] as he has found that cus-
tomer behaviour tends to reveal overlooked latent de-
fects. This also encourages us to explore the relation-
ship between in-house system testing that is focussed
on customer usage scenarios, and observe the result-
ing relationship of in-house defects to field defects, as
well as the relationships revealed between coverage
and this kind of testing. This will be future work.

We do not claim that these observations can be gen-
eralized for all projects, as they were made for two
bundles of a product which is much larger in compar-
ison, and consists of much more extensive function-
ality. We do believe that the observations are valu-
able as an addition to the existing documented knowl-
edge. In this study we chose to do pairwise com-
parisons between variables. In addition to the usage-
based testing analysis mentioned, we intend to con-
duct additional studies in this analysis to investigate
multivariate relationships. An example of the useful-
ness of this extended exploration would be correla-
tions of the relationships between code coverage, in-
house defects, and field defects. In such a study, we
would explore the conjunction that was included in
our discussion above. This would allow us to further
quantify how testing and in-house defect revelation
impacts on product quality. The ultimate result might
be a regression model that presents a function that al-
lows us to see what the optimal amount of testing and
coverage would be to achieve an acceptable level of
post-release defects. This would be a risk analysis
model. Such potential models offer us an indication
of how powerful empirical research such as this can
be in possible statistical process control. As a result,
we see the possibilities for a more precise practice of
software quality, and on a more general level, we see
possibilities for the growth of software engineering.

Appendix

At the time of the work conducted in this paper, ATAC
was the licensed version of the product utilized for
coverage measurement. For the purpose of refer-

ence, and to ensure that all information is current,
it should be noted that the product ATAC has since
been repackaged and is now marketed by the com-
pany Cleanscape under arrangement with Telcordia
Applied Research. ATAC has been renamed Test-
Wise.

IBM is a registered trademark of International
Business Machines Corporation in the United States,
other countries, or both.

Other company, product, or service names may be
trademarks or service marks of others.
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